Jumat, 29 Mei 2009

GERAK MELINGKAR

GMB adalah gerak melingkar dengan kecepatan sudut (w) tetap.



Arah kecepatan linier v selalu menyinggung lintasan, jadi sama dengan arah kecepatan tangensial sedanghan besar kecepatan v selalu tetap (karena w tetap). Akibatnya ada percepatan radial ar yang besarnya tetap tetapi arahnya berubah-ubah. ar disebut juga percepatan sentripetal/sentrifugal yang selalu | v.

v = 2pR/T = w R

ar = v2/R = w2 R

s = q R

2. GERAK MELINGKAR BERUBAH BERATURAN (GMBB)

GMBB adalah gerak melingkar dengan percepatan sudut a tetap.

Dalam gerak ini terdapat percepatan tangensial aT = percepatan linier, merupakan percepatan yang arahnya menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan v).

a = Dw/Dt = aT / R

aT = dv/dt = a R

T = perioda (detik)
R = jarijari lingkaran.
a = percepatan angular/sudut (rad/det2)
aT = percepatan tangensial (m/det2)
w = kecepatan angular/sudut (rad/det)
q = besar sudut (radian)
S = panjang busur

Hubungan besaran linier dengan besaran angular:

vt = v0 + a t wt
S = v0 t + 1/2 a t2
Þ w0 + a t
Þ q =
w0 + 1/2 a t2

Contoh:

1. Sebuah mobil bergerak pada jalan yang melengkung dengan jari-jari 50 m. Persamaan gerak mobil untuk S dalam meter dan t dalam detik ialah:

S = 10+ 10t - 1/2 t2

Hitunglah:
Kecepatan mobil, percepatan sentripetal dan percepatan tangensial pada saat t = 5 detik !

Jawab:

v = dS/dt = 10 - t; pada t = 5 detik, v5 = (10 - 5) = 5 m/det.
- percepatan sentripetal : aR = v52/R = 52/50 = 25/50 = 1/2 m/det2
- percepatan tangensial : aT = dv/dt = -1 m/det2

tekanan dan fluida

Tekanan dan Fluida

Fluida

Yang kita maksud dengan fluida disini adalah suatu bentuk materi yang mudah mengalir misalnya zat cair dan gas. Sifat kemudahan mengalir dan kemampuan untuk menyesuaikan dengan tempatnya berada merupakan aspek yang membedakan fluida dengan zat benda tegar. Meskipun demikian hukum-hukum yang berlaku pada dua sistem ini tidak berbeda. Pada bagian ini kita akan meninjau fluida dalam keadaan tidak mengalir, contohnya air di dalam suatu wadah atau air di danau/waduk.

Aspek pertama yang kita dapati ketika kita berada dalam suatu fluida (zat cair) yaitu tekanan. Kita merasakan ada tekanan pada tubuh kita yang berada di dalam zat cair.

Tekanan

Pengertian tekanan akan mudah kita pahami setelah kita menjawab pertanyaan-pertanyaan di bawah ini. Mengapa pisau yang tajam lebih mudah memotong dari pada pisau yang tumpul? Mengapa paku yang runcing lebih mudah menancap kedalam benda dibandingkan paku yang kurang runcing? Pertanyaan diatas sangat berhubungan dengan konsep tekanan.

Konsep tekanan identik dengan gaya, gaya selalu menyertai pengertian tekanan. Tekanan yang besar dihasilkan dari gaya yang besar pula, sebaliknya tekanan yang kecil dihasilkan dari gaya yang kecil. Dari pernyataan di atas dapat dikatakan bahwa tekanan sebanding dengan gaya. Mari kita lihat orang memukul paku sebagai contoh. Orang menancapkan paku dengan gaya yang besar menghasilkan paku yang menancap lebih dalam dibandingkan dengan gaya yang kecil.

paluPengertian tekanan tidak cukup sampai disini. Terdapat perbedaan hasil tancapan paku bila paku runcing dan paku tumpul. Paku runcing menancap lebih dalam dari pada paku yang tumpul walaupun dipukul dengan gaya yang sama besar. Dari sini terlihat bahwa luas permukaan yang terkena gaya berpengaruh terhadap tekanan. Luas permukaan yang sempit/kecil menghasilkan tekanan yang lebih besar daripada luas permukaan yang lebar. Artinya tekanan berbanding terbalik dengan luas permukaan.

Penjelasan di atas memberikan bukti yang sangat nyata pada pengertian tekanan. Jadi, tekanan dinyatakan sebagai gaya per satuan luas.

Pengertian tekanan ini digunakan secara luas dan lebih khusus lagi untuk Fluida. Satuan untuk tekanan dapat diperoleh dari rumus di atas yaitu 1 Newton/m2 atau disebut dengan pascal. Jadi 1 N/m2=1 Pa (pascal).

Bila suatu cairan diberi tekanan dari luar, tekanan ini akan menekan ke seluruh bagian cairan dengan sama prinsip ini dikenal sebagai hukum Pascal.

Massa Jenis

Fluida memiliki bentuk dan ukuran yang berubah-ubah tergantung dengan wadah tempat fluida berada. Namun ada satu besaran dari fluida yang dapat mencirikan suatu jenis fluida dan membedakannya dengan fluida yang lain. Misalnya apa perbedaan cairan air dan cairan minyak tanah selain dari baunya. Sifat yang membedakan fluida satu dengan yang lainnya dinamakan dengan massa jenis. Massa jenis tidak hanya berlaku pada fluida saja, tapi berlaku juga pada semua benda tak terkecuali benda tegar. Namun, pengertian massa jenis akan sangat berguna untuk membedakan fluida satu dengan yang lainnya karena bentuk fluida yang tidak tentu.

Massa jenis berhubungan dengan kerapatan benda tersebut. Kita ambil contoh; suatu ruangan yang diisi oleh orang. Sepuluh orang menempati ruang kecil dikatakan lebih rapat dibandingkan dengan sepuluh orang yang menempati ruangan yang besar. Contoh ini membuktikan bahwa kerapatan berbanding terbalik dengan volume (isi) ruang. Kerapatan yang besar dihasilkan dari ruang yang kecil (sempit) dan kerapatan kecil didapat dari ruang yang besar. Kemudian kerapatan juga sebanding dengan jumlah materi yang ada di dalam ruang atau massa benda.

Dari penjelasan di atas dapat disimpulkan bahwa kerapatan sebanding dengan massa.

Kerapatan sebanding dengan massa

massa jenis dilambangkan dengan (rho) dan memiliki satuan kg/m3 atau gr/cm3 dimana 1 gr/cm3=1.000 kg/m3

prinsip archimedes

Gaya Ke atas dan Prinsip Archimedes

anak sedang mengapung di air

Kita semua pasti suka berenang dan pasti sudah pernah berenang di kolam renang, atau paling tidak berendam di dalam air. Jika kita teliti, kita pasti merasakan ada sesuatu yang berbeda ketika kita menceburkan diri kita ke dalam air. Kita merasa seperti terangkat oleh air atau bisa dikatakan ada gaya seolah-olah mengangkat kita, gaya yang dilakukan oleh fluida.Gaya ini akan lebih terlihat apabila kita meletakkan benda yang ringan seperti gabus diatas permukaan air dia akan mengapung. Ini menunjukkan adanya gaya apung yang bekerja pada fluida.

Kenyataan yang lain yang dapat kita amati ialah apabila seuah benda yang ditenggelamkan ke dalam air, ada sebagian fluida yang berpindah dan bila kita timbang berat fluida yang dipindahkan, maka akan sama dengan berat benda yang dimasukan kedalam air tadi. Kenyataan ini merupakan suatu hukum dasar dalam penggambaran fluida yang disebut dengan prinsip Archimedes.

Archimedes

Archimedes

Berat suatu benda dapat diketahui dari massanya dikali gravitasi W = m.g . Bagaimana dengan berat fluida. Karena fluida dapat dibedakan berdasarkan massa jenis, massa fluida dapat diketahui dari massa jenis dan volumenye. Jadi, berat suatu fluida adalah massa jenis benda dikali volume dikali gravitasi. Bila ini dikaitkan dengan gaya apung, didapat bahwa gaya apung sebanding dengan massa jenis dan fluida.

Berdasarkan massa jenisnya benda yang tercebur ke dalam fluida dapat berada dalam satu dari tiga keadaan, yaitu tenggelam, melayang dan terapung. Benda akan tenggelam bila massa jenisnya lebih besar dari massa jenis fluida. Benda akan melayang, apabila massa jenisnya sama dengan massa jenis fluida. Benda akan terapung bila massa jenisnya lebih kecil dari massa jenis fluida

Benda yang terapung memiliki massa jenis lebih kecil dari massa jenis fluida sehingga gaya lebih kecil dari gaya ke atas fluida. Bila ada sebagian benda yang tercelup, gaya ke atas fluida ini sama dengan berat benda yang tercelup.

gelombang elektromagnetik

Pertama, arus listrik dapat menghasilkan (menginduksi) medan magnet. Ini dikenal sebagai gejala induksi magnet. Peletak dasar konsep ini adalah Oersted yang telah menemukan gejala ini secara eksperimen dan dirumuskan secara lengkap oleh Ampere. Gejala induksi magnet dikenal sebagai Hukum Ampere.


Michael Faraday, penemu induksi elektromagnetik

Michael Faraday, penemu induksi elektromagnetik

Kedua, medan magnet yang berubah-ubah terhadap waktu dapat menghasilkan (menginduksi) medan listrik dalam bentuk arus listrik. Gejala ini dikenal sebagai gejala induksi elektromagnet. Konsep induksi elektromagnet ditemukan secara eksperimen oleh Michael Faraday dan dirumuskan secara lengkap oleh Joseph Henry. Hukum induksi elektromagnet sendiri kemudian dikenal sebagai Hukum Faraday-Henry.

Dari kedua prinsip dasar listrik magnet di atas dan dengan mempertimbangkan konsep simetri yang berlaku dalam hukum alam, James Clerk Maxwell mengajukan suatu usulan. Usulan yang dikemukakan Maxwell, yaitu bahwa jika medan magnet yang berubah terhadap waktu dapat menghasilkan medan listrik maka hal sebaliknya boleh jadi dapat terjadi. Dengan demikian Maxwell mengusulkan bahwa medan listrik yang berubah terhadap waktu dapat menghasilkan (menginduksi) medan magnet. Usulan Maxwell ini kemudian menjadi hukum ketiga yang menghubungkan antara kelistrikan dan kemagnetan.

James Clerk Maxwell peletak dasar teori gelombang elektromagnetik

James Clerk Maxwell peletak dasar teori gelombang elektromagnetik

Jadi, prinsip ketiga adalah medan listrik yang berubah-ubah terhadap waktu dapat menghasilkan medan magnet. Prinsip ketiga ini yang dikemukakan oleh Maxwell pada dasarnya merupakan pengembangan dari rumusan hukum Ampere. Oleh karena itu, prinsip ini dikenal dengan nama Hukum Ampere-Maxwell.

Dari ketiga prinsip dasar kelistrikan dan kemagnetan di atas, Maxwell melihat adanya suatu pola dasar. Medan magnet yang berubah terhadap waktu dapat membangkitkan medan listrik yang juga berubah-ubah terhadap waktu, dan medan listrik yang berubah terhadap waktu juga dapat menghasilkan medan magnet. Jika proses ini berlangsung secara kontinu maka akan dihasilkan medan magnet dan medan listrik secara kontinu. Jika medan magnet dan medan listrik ini secara serempak merambat (menyebar) di dalam ruang ke segala arah maka ini merupakan gejala gelombang. Gelombang semacam ini disebut gelombang elektromagnetik karena terdiri dari medan listrik dan medan magnet yang merambat dalam ruang.

Pada mulanya gelombang elektromagnetik masih berupa ramalan dari Maxwell yang dengan intuisinya mampu melihat adanya pola dasar dalam kelistrikan dan kemagnetan, sebagaimana telah dibahas di atas. Kenyataan ini menjadikan J C Maxwell dianggap sebagai penemu dan perumus dasar-dasar gelombang elektromagnetik.

Teori Maxwell tentang listrik dan magnet meramalkan adanya gelombang elektromgnetik

Teori Maxwell tentang listrik dan magnet meramalkan adanya gelombang elektromgnetik

Ramalan Maxwell tentang gelombang elektromagnetik ternyata benar-benar terbukti. Adalah Heinrich Hertz yang membuktikan adanya gelombang elektromagnetik melalui eksperimennya. Eksperimen Hertz sendiri berupa pembangkitan gelombang elektromagnetik dari sebuah dipol listrik (dua kutub bermuatan listrik dengan muatan yang berbeda, positif dan negatif yang berdekatan) sebagai pemancar dan dipol listrik lain sebagai penerima. Antena pemancar dan penerima yang ada saat ini menggunakan prinsip seperti ini.

diagram skematik eksperimen Hertz

diagram skematik eksperimen Hertz

Melalui eksperimennya ini Hertz berhasil membangkitkan gelombang elektromagnetik dan terdeteksi oleh bagian penerimanya. Eksperimen ini berhasil membuktikan bahwa gelombang elektromagnetik yang awalnya hanya berupa rumusan teoritis dari Maxwell, benar-benar ada sekaligus mengukuhkan teori Maxwell tentang gelombang elektromagnetik.